| Candidate surname | ails bel | ow before ente | Other name | ndidate information
es | |---|----------|--------------------|------------|---------------------------| | Pearson Edexcel
International GCSE (9–1) | Cer | ntre Number | | Candidate Number | | Time 2 hours | | Paper
reference | 4 | CP0/01 | | | | | | | | Computer Scie PAPER 1: Principles o | | | Science | | ## **Instructions** - Use **black** ink or ball-point pen. - Fill in the boxes at the top of this page with your name, centre number and candidate number. - Answer all questions. - Answer the questions in the spaces provided - there may be more space than you need. ## Information - The total mark for this paper is 80. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. - You are not allowed to use a calculator. ## **Advice** - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. - Marks will not be awarded for using product or trade names in answers without giving further explanation. - Good luck with your examination. Turn over ▶ ## Answer ALL questions. Write your answers in the spaces provided. Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . - 1 Binary digits (bits) are grouped together to represent different types of data. - (a) Hexadecimal notation is sometimes used to represent patterns of binary digits. Identify **one** reason why programmers use hexadecimal notation. (1) - A Easier for a computer to understand. - **B** Easier for humans to read. - ☐ C Takes up less computer memory. - **D** Quicker than binary to execute. - (b) Convert the bit pattern 0101 1010 to hexadecimal. (2) (c) Identify the number of binary patterns that can be represented by 8 bits. (1) - **■ B** 256 - **■ D** 1024 (d) Complete the table by adding these two 8-bit binary integers. (2) | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | |---|---|---|---|---|---|---|---| | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | | | | | | | | | | (e) Give the result of performing a logical left shift of 1 place on the binary integer 0100. (1) (f) Give the number of bits per character used by standard ASCII. (1) (g) **Figure 1** shows a black and white bitmap image. The pixels in row 5 are represented by the binary pattern 1001 1001 Figure 1 (i) State what is meant by the term **pixel**. (1) (ii) Construct an expression to show the number of pixels in the image. (1) (iii) The image is changed so that any pixel can be one of 16 different colours. State the minimum number of bits that would be needed to represent **one** pixel. (1) (Total for Question 1 = 11 marks) | Many organisations use networks. | | |--|--| | | | | | | | | (1) | | | | | (b) State the purpose of network protocols. | | | | (1) | | | | | | | | (c) Data is transmitted in packets. | | | (i) Identify the layer of the TCP/IP model that would add the File Transfer | | | ☑ A Application | (1) | | ■ B Data | | | | | | ☑ D Transport | | | (ii) Give one task carried out by the network layer. | | | | (1) | | | | | | | | (d) Complete the table by adding a tick (\checkmark) to match each item to its name. | | | | (c) Data is transmitted in packets. (i) Identify the layer of the TCP/IP model that would add the File Transfer | | Item | Domain
Name | IP
Address | URL | |-------------------------|----------------|---------------|-----| | https://www.pearson.com | | | | | 216.33.251.195 | | | | | pearson.com | | | | (1) (1) (2) (e) **Figure 2** shows a network topology. Figure 2 - (i) State the name of this network topology. - (ii) State **one** benefit of using this network topology. - (iii) State **one** drawback of using this network topology. (1) - (f) Files may be compressed using lossless or lossy algorithms. - (i) Music files are distributed over the internet. Give **two** reasons why lossy compression is used when distributing music files over the internet. 1______ | (ii) Ide | entify which one of these file formats uses lossy compression. | (1) | |--------------------|--|------------| | \times | A BMP | | | \boxtimes | B DOC | | | \bowtie | C JPEG | | | \boxtimes | D PNG | | | (iii) He | re is a string of data. | | | CC | CWWWCCWWWWWWCCC | | | Giv | ve the result of compressing the string using a run-length encoding algorith | nm.
(1) | | • The • The Constr | o file is to be transmitted over the internet. e network transmission speed is 54 Mbps. e file size is 6 gigabytes (GB). uct an expression to show how the transmission time, in seconds, is calcula o not have to do the calculation. (Total for Question 2 = 18 mage) | (4) | | Zakir wants to buy a new laptop. | | |---|-----| | (a) He knows that a laptop has both hardware and software. | | | Explain why the laptop needs both hardware and software. | (2) | | | | | (b) Zakir needs to choose between a solid state drive and a hard disc drive. | | | (i) Give two reasons, other than cost and capacity, why Zakir may choose a solid state drive rather than a hard disc drive. | (2) | | | | | (ii) Solid state drives store data on flash memory, which is similar to RAM. Explain one difference between flash memory and RAM. | (2) | | | | | (c) One of the laptops has 4 megabytes (MB) of cache memory. | | | Explain the purpose of cache memory. | (2) | | | | | | | (d) Zakir uses many devices. Complete the table by adding **one** tick (\checkmark) in each row to show whether the device is an input device, an output device or both. (2) | Device | Input | Output | Both | |--------------|-------|--------|------| | Headset | | | | | Mouse | | | | | Printer | | | | | Touch screen | | | | (e) Zakir needs to protect his laptop against malware. Give **two** types of anti-malware software he could install. (2) | ш | |
 |
 |
 |
 | |---|---|------|------|------|------| _ | | | | | | | 7 |) | | | | | (Total for Question 3 = 12 marks) (1) (b) Explain **one** reason why a simulation may require a powerful processor. (2) (c) A scientist uses Boolean logic in programs. Complete the table to show the results of each operation. (3) | R | S | W | NOT S | R AND W | (NOT S) OR (R AND W) | |---|---|---|-------|---------|----------------------| | 0 | 0 | 0 | | | | | 0 | 0 | 1 | | | | | 0 | 1 | 0 | | | | | 0 | 1 | 1 | | | | | 1 | 0 | 0 | | | | | 1 | 0 | 1 | | | | | 1 | 1 | 0 | | | | | 1 | 1 | 1 | | | | | (i) Describe the stored pro | gram concept. | | |---|--|-----| | | | (2) | | | | | | | | | | | | | | (ii) The fetch-decode-execu
follows in order to proce | ite cycle is the cycle the central processing unit (CPU) ess instructions. | | | Name two registers used | d in the cycle. | (2) | | | | (-) | | | | | | (iii) Describe the role of the | address bus and the data bus during the fetch part of | | | | | | | the cycle. | | (2) | | tne cycle. | | (2) | | (iv) Complete the table to sh | now the effect on a computer system of increasing the | | | | now the effect on a computer system of increasing the | | | (iv) Complete the table to sh | now the effect on a computer system of increasing the | | | (iv) Complete the table to sh
width of a bus. | | | | (iv) Complete the table to sh
width of a bus. Change made ncreasing the width of the | | | (Total for Question 4 = 14 marks) - 5 Isaac is a program developer. - (a) **Figure 3** shows an algorithm Isaac has written. Figure 3 (i) Complete the trace table. You may not need to use all of the rows. (5) | | | | | | Nu | umbers arr | ay | | |-------|--------|----------|------|-----|-----|------------|-----|-----| | Count | Length | Midpoint | Temp | [0] | [1] | [2] | [3] | [4] | | 0 | 4 | 2 | 0 | 10 | 6 | 1 | 9 | 3 | (1) | |--|-----| | | | | (iii) Explain why the variable Temp is needed. | (2) | | | | | | | | | | (ii) Give the purpose of the algorithm. (b) **Figure 4** shows an algorithm Isaac has written using pseudocode. The algorithm should display the average of the numbers that have been input. - 1 SET total TO 0 - 2 SET number TO 0 - 3 SET count TO 0 - 4 WHILE number <> −1 DO - 5 SEND 'Input a number or −1 to end the program' TO DISPLAY - 6 RECEIVE number FROM (INTEGER) KEYBOARD - 7 SET total TO total + number - 8 SET count TO count + 1 - 9 END WHILE - 10 SET average TO total / count - 11 SEND 'The average is ' & average TO DISPLAY Figure 4 Isaac uses the input 2, 3, 5, 2, -1 to test the algorithm. He discovers an error. | Expected result | Actual result | | |---------------------|--------------------|--| | The average is 2.75 | The average is 2.2 | | | (i) Explain why the Actual result is not the same as the Expected result. | (2) | |---|-----| | | | | (ii) Give the number of the line that contains the error. | (1) | | (iii) Amend a single line of pseudocode to correct the error. | (1) | | (c) | Isaac is going to sell one of his programs and distribute it on a DVD. | | |-----|--|------| | | Give two advantages of choosing a programming language that uses a compiler, rather than an interpreter, for a program that will be distributed on a DVD. | (2) | | 1 | | | | 2 | | | | 2 | | | | | (Total for Question 5 = 14 ma | rks) | | 6 | (a) | Two emerging technologies are DNA computing and quantum computing. (i) Explain one difference between DNA computing and traditional computing | ng.
(2) | |---|-----|---|------------| | | | (ii) Give a definition of the term superposition in quantum computing. | (1) | | 1 | | Ethically, everyone should be able to access the benefits of technology. Give two reasons why this may not be possible. | (2) | | 2 | | | | | | 뒥 | | | | | |---|------|---|-------------|---|---| ì | ì | Ì | Ц | ĺ | 単単単二 | 'n | ĺ | 'n | ₹ | 7 | | | | | l | 5 | 7 | 3 | | | | ĺ | S | 3 | 3 | | | | Ì | S | 3 | 7 | | | | (| Š | 3 | 3 | | | | Š | 2 | 3 | 2 | | | | Š | | 2 | 7 | | | | Š | | 3 | 3 | ֡ | | 2 | | | 3 | 3 | | | 3 | Š | | | 3 | | | 2 | Š | | | 2 | | | ? | Š | | \
\
\ | 2 | | | 2 | Š | | | | | | ? | Š | | | | | | (c) | Widespread use of computer technology has a negative environmental impact. | | | | | |-----|--|-------|--|--|--| | | Discuss the negative environmental impact of using computers and actions that could be taken to reduce it. | | | | | | | | (6) | (Total for Question 6 = 11 ma | arks) | | | | | | TOTAL FOR PAPER = 80 MA | RKS | | | | # **BLANK PAGE** # **BLANK PAGE** # **BLANK PAGE** # Pearson Edexcel International GCSE (9-1) Paper reference 4CP0/01 # **Computer Science** **Component 1** **Pseudocode command set** **Resource Booklet** Do not return this resource booklet with the question paper. Turn over ▶ #### Pseudocode command set Questions in the written examination that involve code will use this pseudocode for clarity and consistency. However, students may answer questions using any valid method. ### **Data types** **INTEGER** **REAL** **BOOLEAN** **CHARACTER** ### **Type coercion** Type coercion is automatic if indicated by context. For example 3 + 8.25 = 11.25 (integer + real = real) Mixed mode arithmetic is coerced like this: | | INTEGER | REAL | |---------|---------|------| | INTEGER | INTEGER | REAL | | REAL | REAL | REAL | Coercion can be made explicit. For example, RECEIVE age FROM (INTEGER) KEYBOARD assumes that the input from the keyboard is interpreted as an INTEGER, not a STRING. ### **Constants** The value of constants can only ever be set once. They are identified by the keyword CONST. Two examples of using a constant are shown. **CONST REAL PI** **SET PI TO 3.14159** SET circumference TO radius * PI * 2 #### **Data structures** **ARRAY** **STRING** Indices start at zero (0) for all data structures. All data structures have an append operator, indicated by &. Using & with a STRING and a non-STRING will coerce to STRING. For example, SEND 'Fred' & age TO DISPLAY, will display a single STRING of 'Fred18'. ## **Identifiers** Identifiers are sequences of letters, digits and '_', starting with a letter, for example: MyValue, myValue, My_Value, Counter2 #### **Functions** LENGTH() For data structures consisting of an array or string. RANDOM(n) This generates a random number from 0 to n. #### **Comments** Comments are indicated by the # symbol, followed by any text. A comment can be on a line by itself or at the end of a line. #### **Devices** Use of KEYBOARD and DISPLAY are suitable for input and output. Additional devices may be required, but their function will be obvious from the context. For example, CARD_READER and MOTOR are two such devices. #### **Notes** In the pseudocode on the following pages, the < > indicates where expressions or values need to be supplied. The < > symbols are not part of the pseudocode. | Variables and arrays | | | | | |---|--|--|--|--| | Syntax | Explanation of syntax | Example | | | | SET Variable TO <value></value> | Assigns a value to a variable. | SET Counter TO 0
SET MyString TO 'Hello world' | | | | SET Variable TO <expression></expression> | Computes the value of an expression and assigns to a variable. | SET Sum TO Score + 10
SET Size to LENGTH(Word) | | | | SET Array[index] TO <value></value> | Assigns a value to an element of a one-dimensional array. | SET ArrayClass[1] TO 'Ann'
SET ArrayMarks[3]TO 56 | | | | SET Array TO [<value>,]</value> | Initialises a one-dimensional array with a set of values. | SET ArrayValues TO [1, 2, 3, 4, 5] | | | | SET Array [RowIndex,
ColumnIndex] TO <value></value> | Assigns a value to an element of a two dimensional array. | SET ArrayClassMarks[2,4] TO 92 | | | | Selection | | | | | |---|--|--|--|--| | Syntax | Explanation of syntax | Example | | | | IF <expression> THEN
<command/>
END IF</expression> | If <expression> is true then command is executed.</expression> | IF Answer = 10 THEN SET Score TO Score + 1 END IF | | | | IF <expression> THEN</expression> | If <expression> is true then first <command/> is executed, otherwise second <command/> is executed.</expression> | IF Answer = 'correct' THEN SEND 'Well done' TO DISPLAY ELSE SEND 'Try again' TO DISPLAY END IF | | | | Repetition | | | | | |---|--|--|--|--| | Syntax | Explanation of syntax | Example | | | | WHILE <condition> DO
<command/>
END WHILE</condition> | Pre-conditioned loop. Executes <command/> whilst <condition> is true.</condition> | WHILE Flag = 0 DO
SEND 'All well' TO DISPLAY
END WHILE | | | | REPEAT <command/> UNTIL <expression></expression> | Post-conditioned loop. Executes <command/> until <condition> is true. The loop must execute at least once.</condition> | REPEAT SET Go TO Go + 1 UNTIL Go = 10 | | | | REPEAT <expression> TIMES
<command/>
END REPEAT</expression> | Count controlled loop. The number of times < command> is executed is determined by the expression. | REPEAT 100-Number TIMES
SEND '*'TO DISPLAY
END REPEAT | | | | FOR <id> FROM <expression> TO <expression> DO <command/> END FOR</expression></expression></id> | Count controlled loop. Executes <command/> a fixed number of times. | FOR Index FROM 1 TO 10 DO
SEND ArrayNumbers[Index]
TO DISPLAY
END FOR | | | | FOR <id>FROM <expression> TO <expression> STEP <expression> DO <command/> END FOR</expression></expression></expression></id> | Count controlled loop using a step. | FOR Index FROM 1 TO 500 STEP
25 DO
SEND Index TO DISPLAY
END FOR | | | | FOR EACH <id> FROM
<expression> DO
<command/>
END FOREACH</expression></id> | Count controlled loop. Executes for each element of an array. | SET WordsArray TO ['The', 'Sky', 'is', 'grey'] SET Sentence to " FOR EACH Word FROM WordsUArray DO SET Sentence TO Sentence & Word &'' END FOREACH | | | | Input/output | | | | | |---|--------------------------------|---|--|--| | Syntax | Explanation of syntax | Example | | | | SEND <expression> TO DISPLAY</expression> | Sends output to the screen. | SEND 'Have a good day.'TO
DISPLAY | | | | RECEIVE <identifier> FROM
(type)
<device></device></identifier> | Reads input of specified type. | RECEIVE Name FROM (STRING) KEYBOARD RECEIVE LengthOfJourney FROM (INTEGER) CARD_READER RECEIVE YesNo FROM (CHARACTER) CARD_READER | | | | File handling | | | | |---------------------------------------|--|--|--| | Syntax | Explanation of syntax | Example | | | READ <file> <record></record></file> | Reads in a record from a <file> and assigns to a <variable>. Each READ statement reads a record from the file.</variable></file> | READ MyFile.doc Record | | | WRITE <file> <record></record></file> | Writes a record to a file. Each WRITE statement writes a record to the file. | WRITE MyFile.doc Answer1,
Answer2, 'xyz 01' | | | Subprograms | | | |---|----------------------------------|---| | Syntax | Explanation of syntax | Example | | PROCEDURE <id> (<parameter>,) BEGIN PROCEDURE <command/> END PROCEDURE</parameter></id> | Defines a procedure. | PROCEDURE CalculateAverage
(Mark1, Mark2, Mark3)
BEGIN PROCEDURE
SET Avg to (Mark1 + Mark2 +
Mark3)/3
END PROCEDURE | | FUNCTION <id> (<parameter>,) BEGIN FUNCTION <command/> RETURN <expression> END FUNCTION</expression></parameter></id> | Defines a function. | FUNCTION AddMarks (Mark1,
Mark2, Mark3)
BEGIN FUNCTION
SET Total to (Mark1 + Mark2 +
Mark3)/3
RETURN Total
END FUNCTION | | <id> (<parameter>,)</parameter></id> | Calls a procedure or a function. | Add (FirstMark, SecondMark) | | Arithmetic operators | | | |----------------------|------------------|--| | Symbol | Description | | | + | Add | | | - | Subtract | | | / | Divide | | | * | Multiply | | | ۸ | Exponent | | | MOD | Modulo | | | DIV | Integer division | | | Relational operators | | | |----------------------|--------------------------|--| | Symbol | Description | | | = | equal to | | | <> | not equal to | | | > | greater than | | | >= | greater than or equal to | | | < | less than | | | <= | less than or equal to | | | Logical operators | | | |-------------------|---|--| | Symbol | Description | | | AND | Returns true if both conditions are true. | | | OR | Returns true if any of the conditions are true. | | | NOT | Reverses the outcome of the expression; true becomes false, false becomes true. | | | BLANK PAGE | | |------------|--| | | |